Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Fish Dis ; 45(3): 421-434, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34931326

RESUMO

Vibriosis caused by Vibrio alginolyticus has severely affected the development of mariculture industry in recent decades. DctP, a tripartite ATP-independent periplasmic transporter solute-binding subunit, is thought to be one of the virulence factors in Vibrio. In this study, the results displayed no difference in morphological characteristics and growth between ΔdctP (dctP mutant strain) and WT (wild-type strain). Nevertheless, the ability of swarming motility, biofilm formation, ECPase formation, cell adhesion and colonized ability of ΔdctP significantly decreased compared to those of WT. The LD50 of ΔdctP significantly increased by 40-fold compared to that of WT. The transcriptome analysis demonstrated the deletion mutation of dctP could regulate the expression levels of 22 genes related to colonization, adhesion and pathogenicity in V. alginolyticus. The analysis of qRT-PCR showed the transcriptome data were reliable. These results reveal the effect of attenuated function of DctP on colonization, adherence and pathogenicity by controlling the expression of related gene.


Assuntos
Proteínas de Bactérias , Doenças dos Peixes , Vibrioses , Vibrio alginolyticus , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Doenças dos Peixes/microbiologia , Regulação Bacteriana da Expressão Gênica , Vibrioses/veterinária , Vibrio alginolyticus/genética , Vibrio alginolyticus/patogenicidade , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
2.
Microbiol Res ; 254: 126900, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34700184

RESUMO

Under adverse circumstances, bacteria enter the viable but non-culturable (VBNC) state, a dormancy-like state for survival. The altered gene regulation underlying the entry of the VBNC state has not yet been well elucidated. Here, we reported that a subpopulation of cells (23.8 %) in Vibrio alginolyticus cultures enters the VBNC state in response to nutrient limitation at alkaline pH. The proteolysis of pivotal virulence regulator ToxR at these conditions is associated with VBNC formation. Meantime, ToxR abrogation impaired the mobility and the expression of virulence-associated genes, resulting in attenuated virulence in V. alginolyticus. RNA-seq and ChIP-seq analyses of the cells grown in VBNC-inducing conditions revealed that ToxR directly controls the expression of ∼8 genes including ahpC and dps involved in reactive oxygen species (ROS) resistance. ToxR binds to the promoter regions of kdgR, ppiC, ahpC, and dps and further controls their respective expression under oxidative stress conditions. The cells with impaired ToxR accumulated detrimental intracellular ROS. Moreover, these genes contribute to bacterial culturability as their in-frame deletion strains exhibiting severely decreased plate counts and the complementary strain showed rescued viability. Collectively, this study revealed the role of ToxR in switching on the VBNC state by sensing unfavorable environmental signals such as endogenous ROS (hydrogen peroxide, H2O2) in V. alginolyticus and provided mechanistic insights into Vibrio lifestyle adaptation in the marine environment.


Assuntos
Vibrio alginolyticus , Virulência , Adaptação Fisiológica/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Peróxido de Hidrogênio , Proteólise , Espécies Reativas de Oxigênio/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vibrio alginolyticus/efeitos dos fármacos , Vibrio alginolyticus/genética , Vibrio alginolyticus/patogenicidade , Virulência/genética
3.
Microbiol Res ; 253: 126883, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34626929

RESUMO

Vibrio alginolyticus belongs to gram-negative opportunistic pathogen realm infecting humans and aquatic animals causing severe economic losses. The (p)ppGpp-mediated stringent response is corroborated to stress adaptation and virulence of pathogenic mechanisms. Limited reports are documented for the intricate assessment of (p)ppGpp synthetase genes in combating various stress adaptation and elucidation of virulence in V. alginolyticus remains unraveled. The present assessment comprises of generation of deletion mutants in the (p)ppGpp-deficient strains, ΔrelA (relA gene single mutant) and ΔrelAΔspoT (relA and spoT genes double mutant), and the complemented strains, ΔrelA+ and ΔrelAΔspoT+, were constructed to investigate the pivotal roles of (p)ppGpp synthetase genes in V. alginolyticus, respectively. Amino acid sequence alignment analysis initially revealed that RelA and SpoT possess relatively conserved domains and synthetase activity. Hydrolase activity was emancipated by SpoT alone showing variant mode of action. Compared with the wild type and complemented strains, the relA-deficient strain was more sensitive to amino acid starvation and mupirocin. Interestingly, the deletion of spoT resulted in a significant growth deficiency supplemented with bile salts, 3 % ethanol and heat shock. Rapid growth was observed in the stationary phase upon exposure to cold stress and lower doses of ethanol. Subsequently, disruption of (p)ppGpp synthetase genes caused the decline in swimming motility, enhanced biofilm formation, cell aggregation of V. alginolyticus, and reduced mortality of Litopenaeus vannamei. The expression levels of some virulence-associated genes were quantified affirming consistency established by pleiotropic phenotypes. The results are evident for putative roles of (p)ppGpp synthetase genes attributing essential roles for environmental adaption and virulence regulation in V. alginolyticus.


Assuntos
Pirofosfatases , Estresse Fisiológico , Fator de Transcrição RelA , Vibrio alginolyticus , Virulência , Pirofosfatases/genética , Estresse Fisiológico/genética , Fator de Transcrição RelA/genética , Vibrio alginolyticus/genética , Vibrio alginolyticus/patogenicidade , Virulência/genética
4.
Front Immunol ; 12: 746017, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34621277

RESUMO

Vibrio species are ubiquitously distributed in marine environments, with important implications for emerging infectious diseases. However, relatively little is known about defensive strategies deployed by hosts against Vibrio pathogens of distinct virulence traits. Being an ecologically relevant host, the oyster Crassostrea hongkongensis can serve as an excellent model for elucidating mechanisms underlying host-Vibrio interactions. We generated a Vibrio alginolyticus mutant strain (V. alginolyticus△vscC ) with attenuated virulence by knocking out the vscC encoding gene, a core component of type III secretion system (T3SS), which led to starkly reduced apoptotic rates in hemocyte hosts compared to the V. alginolyticusWT control. In comparative proteomics, it was revealed that distinct immune responses arose upon encounter with V. alginolyticus strains of different virulence. Quite strikingly, the peroxisomal and apoptotic pathways are activated by V. alginolyticusWT infection, whereas phagocytosis and cell adhesion were enhanced in V. alginolyticus△vscC infection. Results for functional studies further show that V. alginolyticusWT strain stimulated respiratory bursts to produce excess superoxide (O2•-) and hydrogen peroxide (H2O2) in oysters, which induced apoptosis regulated by p53 target protein (p53tp). Simultaneously, a drop in sGC content balanced off cGMP accumulation in hemocytes and repressed the occurrence of apoptosis to a certain extent during V. alginolyticus△vscC infection. We have thus provided the first direct evidence for a mechanistic link between virulence of Vibrio spp. and its immunomodulation effects on apoptosis in the oyster. Collectively, we conclude that adaptive responses in host defenses are partially determined by pathogen virulence, in order to safeguard efficiency and timeliness in bacterial clearance.


Assuntos
Crassostrea/microbiologia , Hemócitos/imunologia , Vibrio alginolyticus/patogenicidade , Animais , Apoptose , Proteínas de Bactérias/genética , Crassostrea/efeitos dos fármacos , Crassostrea/imunologia , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Técnicas de Inativação de Genes , Hemócitos/citologia , Hemócitos/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Peróxido de Hidrogênio/farmacologia , Deleção de Sequência , Superóxidos/análise , Sistemas de Secreção Tipo III/genética , Vibrio alginolyticus/genética , Virulência/genética
5.
Mol Immunol ; 132: 217-226, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33478821

RESUMO

The thick shell mussel Mytilus coruscus has developed into a model species for studying the interaction between molluscs and environmental stimuli. Herein, integrated analysis of miRNAome and transcriptome was performed to reveal miRNA-mRNA network regulation in Vibrio alginolyticus infected M. coruscus. There have detected some histological abnormalities in digestive gland and gills of V. alginolyticus challenged mussels, ascertaining the effective irritation by the present bacterial strain. A total of 265 novel miRNAs were finally predicted, of which 26 were differentially expressed miRNAs (DEMs). Additionally, 667 differentially expressed genes (DEGs) were detected, which may be potentially associated with innate immune response to V. alginolyticus infection. A regulatory network linked to 22 important pathways and 16 DEMs and 34 OGs was constructed. Some traditional immune-related signaling pathways such as toll-like receptor signaling pathway (TLR) signaling pathway, transforming growth factor-beta (TGF-beta) signaling pathway, peroxisome, phagosome, lysosome, mammalian target of rapamyoin (mTOR) signaling pathway were linked to specific miRNAs and genes in this network. Further, interactional relationship between certain miRNAs and TLR pathway was dissected, which the results predicted that a number of TLRs and TLR-associated signaling genes including TLR1, TLR2, TLR4, TLR6, IRAK1, TRAF6, MAPK, and IL-17 were negatively regulated by novel_miR_11, novel_miR_145, novel_miR_196, novel_miR_5, novel_miR_163 and novel_miR_217 in the TLR pathway. Additionally, interactional relationship between novel_miR_145 and TLR2 was validated by laboratory experiment. The integrated analysis of mRNA and microRNA deep sequencing data exhibited a sophisticated miRNA-mRNA regulation network in M. coruscus in response to V. alginolyticus challenge, which shed a new light on the underlying mechanism of molluscan confronting bacterial infection.


Assuntos
Regulação da Expressão Gênica/genética , MicroRNAs/genética , Mytilus/genética , RNA Mensageiro/genética , Transcriptoma/genética , Vibrioses/genética , Animais , Perfilação da Expressão Gênica/métodos , Hemócitos/microbiologia , Imunidade Inata/genética , Mytilus/microbiologia , Transdução de Sinais/genética , Vibrio alginolyticus/patogenicidade
6.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008449

RESUMO

The abuse of antibiotics in aquaculture and livestock no doubt has exacerbated the increase in antibiotic-resistant bacteria, which imposes serious threats to animal and human health. The exploration of substitutes for antibiotics from marine animals has become a promising area of research, and antimicrobial peptides (AMPs) are worth investigating and considering as potential alternatives to antibiotics. In the study, we identified a novel AMP gene from the mud crab Scylla paramamosain and named it Sparanegtin. Sparanegtin transcripts were most abundant in the testis of male crabs and significantly expressed with the challenge of lipopolysaccharide (LPS) or Vibrio alginolyticus. The recombinant Sparanegtin (rSparanegtin) was expressed in Escherichia coli and purified. rSparanegtin exhibited activity against Gram-positive and Gram-negative bacteria and had potent binding affinity with several polysaccharides. In addition, rSparanegtin exerted damaging activity on the cell walls and surfaces of P. aeruginosa with rougher and fragmented appearance. Interestingly, although rSparanegtin did not show activity against V. alginolyticus in vitro, it played an immunoprotective role in S. paramamosain and exerted an immunomodulatory effect by modulating several immune-related genes against V. alginolyticus infection through significantly reducing the bacterial load in the gills and hepatopancreas and increasing the survival rate of crabs.


Assuntos
Peptídeos Antimicrobianos/genética , Peptídeos Antimicrobianos/farmacologia , Braquiúros/metabolismo , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Animais , Peptídeos Antimicrobianos/metabolismo , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/farmacologia , Braquiúros/genética , Braquiúros/microbiologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Lipopolissacarídeos/efeitos adversos , Masculino , Viabilidade Microbiana/efeitos dos fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Testículo/metabolismo , Distribuição Tecidual , Regulação para Cima , Vibrio alginolyticus/patogenicidade
7.
Pak J Biol Sci ; 23(12): 1591-1600, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33274891

RESUMO

BACKGROUND AND OBJECTIVE: In Egypt, Nile tilapia represents the main cultured type due to its economical price, palatability and easy culturing. This study was aimed to elucidate the pathogenicity of V. alginolyticus isolated from diseased sea bass and experimentally infected healthy Nile tilapia fish. MATERIALS AND METHODS: Healthy Nile tilapia fish were injected I/P with V. alginolyticus isolated from diseased sea bass. Symptoms and mortality rates of infected Nile tilapia fish were recorded during the experimental period. Re-isolation of V. alginolyticus was done from infected tilapia fish by bacteriological methods. For confirmation the pathogenicity of Vibrio isolated either from marine fish or tilapia fish, PCR test was done using tdh and bla gens. Liver and kidney function tests with histopathological examinations of some organs were performed. Treatment trial was done according to the antibiotic sensitivity test. RESULTS: The isolated Vibrio is highly pathogenic to Nile tilapia fish causing deterioration in all parameters which finished by severe mortalities. Treatment with florfenicol, enrofloxacin, or oxytetracycline reduced the mortality rate and improved liver and kidney function parameters of infected Nile tilapia fish. CONCLUSION: V. alginolyticus can infect both marine and fresh water fish inducing a high mortality rate. Treatment of infected fish with florfenicol, enrofloxacin, or oxytetracycline reduces the mortality rate.


Assuntos
Antibacterianos/farmacologia , Bass/microbiologia , Ciclídeos/microbiologia , Doenças dos Peixes/tratamento farmacológico , Vibrioses/tratamento farmacológico , Vibrio alginolyticus/efeitos dos fármacos , Animais , Aquicultura , Enrofloxacina/farmacologia , Doenças dos Peixes/microbiologia , Oxitetraciclina/farmacologia , Tianfenicol/análogos & derivados , Tianfenicol/farmacologia , Vibrioses/microbiologia , Vibrio alginolyticus/genética , Vibrio alginolyticus/isolamento & purificação , Vibrio alginolyticus/patogenicidade
8.
Viruses ; 12(12)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261037

RESUMO

Many filamentous vibriophages encode virulence genes that lead to the emergence of pathogenic bacteria. Most genomes of filamentous vibriophages characterized up until today were isolated from human pathogens. Despite genome-based predictions that environmental Vibrios also contain filamentous phages that contribute to bacterial virulence, empirical evidence is scarce. This study aimed to characterize the bacteriophages of a marine pathogen, Vibrio alginolyticus (Kiel-alginolyticus ecotype) and to determine their role in bacterial virulence. To do so, we sequenced the phage-containing supernatant of eight different V. alginolyticus strains, characterized the phages therein and performed infection experiments on juvenile pipefish to assess their contribution to bacterial virulence. We were able to identify two actively replicating filamentous phages. Unique to this study was that all eight bacteria of the Kiel-alginolyticus ecotype have identical bacteriophages, supporting our previously established theory of a clonal expansion of the Kiel-alginolyticus ecotype. We further found that in one of the two filamentous phages, two phage-morphogenesis proteins (Zot and Ace) share high sequence similarity with putative toxins encoded on the Vibrio cholerae phage CTXΦ. The coverage of this filamentous phage correlated positively with virulence (measured in controlled infection experiments on the eukaryotic host), suggesting that this phage contributes to bacterial virulence.


Assuntos
Caudovirales/genética , Genoma Bacteriano , Inovirus/genética , Vibrio alginolyticus/genética , Vibrio alginolyticus/virologia , Animais , Carga Bacteriana , Caudovirales/classificação , Caudovirales/isolamento & purificação , DNA Viral , Doenças dos Peixes/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Inovirus/classificação , Inovirus/isolamento & purificação , Vibrioses/veterinária , Vibrio alginolyticus/classificação , Vibrio alginolyticus/patogenicidade , Virulência
9.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066515

RESUMO

The interaction between diet and intestinal health has been widely discussed, although in vivo approaches have reported limitations. The intestine explant culture system developed provides an advantage since it reduces the number of experimental fish and increases the time of incubation compared to similar methods, becoming a valuable tool in the study of the interactions between pathogenic bacteria, rearing conditions, or dietary components and fish gut immune response. The objective of this study was to determine the influence of the total substitution of fish meal by plants on the immune intestinal status of seabream using an ex vivo bacterial challenge. For this aim, two growth stages of fish were assayed (12 g): phase I (90 days), up to 68 g, and phase II (305 days), up to 250 g. Additionally, in phase II, the effects of long term and short term exposure (15 days) to a plant protein (PP) diet were determined. PP diet altered the mucosal immune homeostasis, the younger fish being more sensitive, and the intestine from fish fed short-term plant diets showed a higher immune response than with long-term feeding. Vibrio alginolyticus (V. alginolyticus) triggered the highest immune and inflammatory response, while COX-2 expression was significantly induced by Photobacterium damselae subsp. Piscicida (P. damselae subsp. Piscicida), showing a positive high correlation between the pro-inflammatory genes encoding interleukin 1ß (IL1-ß), interleukin 6 (IL-6) and cyclooxygenase 2(COX-2).


Assuntos
Dieta , Microbioma Gastrointestinal , Mucosa Intestinal/imunologia , Dourada/microbiologia , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Imunidade Inata , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Mucosa Intestinal/microbiologia , Photobacterium/patogenicidade , Proteínas de Vegetais Comestíveis , Dourada/imunologia , Dourada/fisiologia , Técnicas de Cultura de Tecidos/métodos , Vibrio alginolyticus/patogenicidade
10.
Environ Microbiol ; 22(10): 4424-4437, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32608186

RESUMO

In our previous study, we found that pumilacidin-like cyclic lipopeptides (CLPs) derived from marine bacterium Bacillus sp. strain 176 significantly suppressed the mobile capability and virulence of Vibrio alginolyticus. Here, to further disclose the mechanism of CLPs inhibiting the motility of V. alginolyticus, we first applied transcriptomic analysis to V. alginolyticus treated with or without CLPs. The transcriptomic results showed that the expression of several important components of the Na+ -driven flagellar motor closely related to bacterial motility were markedly suppressed, suggesting that the structure and function of Na+ -driven flagellar motor might be disabled by CLPs. The transcriptomic data were further analysed by the protein-protein interaction network, and the results supported that MotX, one of the essential components of Na+ -driven flagellar motor was most likely the action target of CLPs. In combination of gene knockout, electrophoretic mobility shift assay and immunoblotting techniques, CLPs were demonstrated to affect the rotation of flagella of Vibrio alginolyticus via direct interacting with the Na+ -driven flagellar motor component MotX, which eventually inhibited the bacterial motility. Interestingly, homologues of MotX were found broadly distributed and highly conserved in different pathogenic species, which extends the application range of CLPs as an antibacterial drug targeting bacterial motility in many pathogens.


Assuntos
Proteínas de Bactérias/genética , Flagelos/fisiologia , Locomoção/genética , Proteínas de Membrana/genética , Peptídeos/metabolismo , Vibrio alginolyticus/metabolismo , Vibrio alginolyticus/patogenicidade , Antibacterianos/metabolismo , Bacillus/metabolismo , Flagelos/genética , Perfilação da Expressão Gênica , Íons/metabolismo , Lipopeptídeos/metabolismo , Proteínas Motores Moleculares/genética , Sódio/metabolismo , Vibrio alginolyticus/genética
11.
J Appl Microbiol ; 129(6): 1472-1485, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32510751

RESUMO

AIMS: Vibrio alginolyticus was frequently isolated from diseased farmed fish in the coaster waters of Hainan Island over the past two decades. In this study, we attempted to identify candidates of virulent strain-specific DNA regions for this pathogen. METHODS AND RESULTS: Suppression subtractive hybridization (SSH) and PCR were successively performed between the typical virulent strain and avirulent strain of V. alginolyticus, in which they shared 99·54% homology of 16S rDNAs. Out of 2873 subtracted clones, nine clones were finally indicated to harbour virulent strain-specific DNA fragments. The receivable functions of the major fragments in the nine clones were believed to encode methyl-accepting chemotaxis protein (n = 1), type VI secretion system-associated FHA domain protein TagH (n = 1), diguanylate cyclase (n = 1), AraC family transcriptional regulator (n = 1), ABC-type uncharacterized transport system permease component (n = 1) and hypothetical proteins (n = 4). Two hypothetical proteins contain several disordered regions. CONCLUSIONS: Some specific DNA regions existed in the virulent strain of V. alginolyticus, and the SSH assay could be a highly sensitive method for identifying virulent regions in pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY: This report is the first to describe the identification of virulent strain-specific DNA regions in the V. alginolyticus genome, which is helpful in developing virulent strain-specific rapid detection methods and is a pivotal precondition for clarifying the molecular virulence mechanism of V. alginolyticus.


Assuntos
DNA Bacteriano/genética , Doenças dos Peixes/microbiologia , Vibrioses/veterinária , Vibrio alginolyticus/isolamento & purificação , Vibrio alginolyticus/patogenicidade , Animais , Genoma Bacteriano/genética , Reação em Cadeia da Polimerase , Especificidade da Espécie , Técnicas de Hibridização Subtrativa , Vibrioses/microbiologia , Vibrio alginolyticus/genética , Virulência/genética
12.
BMC Genomics ; 21(1): 354, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393168

RESUMO

BACKGROUND: Species of the genus Vibrio, one of the most diverse bacteria genera, have undergone niche adaptation followed by clonal expansion. Niche adaptation and ultimately the formation of ecotypes and speciation in this genus has been suggested to be mainly driven by horizontal gene transfer (HGT) through mobile genetic elements (MGEs). Our knowledge about the diversity and distribution of Vibrio MGEs is heavily biased towards human pathogens and our understanding of the distribution of core genomic signatures and accessory genes encoded on MGEs within specific Vibrio clades is still incomplete. We used nine different strains of the marine bacterium Vibrio alginolyticus isolated from pipefish in the Kiel-Fjord to perform a multiscale-comparative genomic approach that allowed us to investigate [1] those genomic signatures that characterize a habitat-specific ecotype and [2] the source of genomic variation within this ecotype. RESULTS: We found that the nine isolates from the Kiel-Fjord have a closed-pangenome and did not differ based on core-genomic signatures. Unique genomic regions and a unique repertoire of MGEs within the Kiel-Fjord isolates suggest that the acquisition of gene-blocks by HGT played an important role in the evolution of this ecotype. Additionally, we found that ~ 90% of the genomic variation among the nine isolates is encoded on MGEs, which supports ongoing theory that accessory genes are predominately located on MGEs and shared by HGT. Lastly, we could show that these nine isolates share a unique virulence and resistance profile which clearly separates them from all other investigated V. alginolyticus strains and suggests that these are habitat-specific genes, required for a successful colonization of the pipefish, the niche of this ecotype. CONCLUSION: We conclude that all nine V. alginolyticus strains from the Kiel-Fjord belong to a unique ecotype, which we named the Kiel-alginolyticus ecotype. The low sequence variation of the core-genome in combination with the presence of MGE encoded relevant traits, as well as the presence of a suitable niche (here the pipefish), suggest, that this ecotype might have evolved from a clonal expansion following HGT driven niche-adaptation.


Assuntos
Variação Genética , Genoma Bacteriano , Vibrio alginolyticus/genética , Resistência a Medicamentos/genética , Evolução Molecular , Transferência Genética Horizontal , Ilhas Genômicas , Filogenia , Vibrio alginolyticus/classificação , Vibrio alginolyticus/isolamento & purificação , Vibrio alginolyticus/patogenicidade , Virulência/genética
13.
Virulence ; 11(1): 349-364, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32316833

RESUMO

Development of low-cost and eco-friendly approaches to fight bacterial pathogens is especially needed in aquaculture. We previously showed that exogenous malate reprograms zebrafish's metabolome to potentiate zebrafish survival against Vibrio alginolyticus infection. However, the underlying mechanism is unknown. Here, we use GC-MS based metabolomics to identify the malate-triggered metabolic shift. An activated TCA cycle and elevated taurine are identified as the key metabolic pathways and the most crucial biomarker of the reprogrammed metabolome, respectively. Taurine elevation is attributed to the activated TCA cycle, which is further supported by the increased expression of genes in the metabolic pathway of taurine biosynthesis from the isocitrate of the TCA cycle to taurine. Exogenous taurine increases the survival of zebrafish against V. alginolyticus infection as malate did. Moreover, exogenous taurine and malate regulate the expression of innate immunity genes and promote the generation of reactive oxygen species and nitrogen oxide in a similar way. The two metabolites can alleviate the excessive immune response to bacterial challenge, which protects fish from bacterial infection. These results indicate that malate enhances the survival of zebrafish to V. alginolyticus infection via taurine. Thus, our study highlights a metabolic approach to enhance a host's ability to fight bacterial infection.


Assuntos
Doenças dos Peixes/microbiologia , Malatos/farmacologia , Taurina/farmacologia , Vibrioses/microbiologia , Vibrio alginolyticus/patogenicidade , Peixe-Zebra/microbiologia , Animais , Aquicultura , Doenças dos Peixes/imunologia , Imunidade Inata , Redes e Vias Metabólicas , Metabolômica , Vibrioses/imunologia , Peixe-Zebra/imunologia , Peixe-Zebra/metabolismo
14.
Fish Shellfish Immunol ; 100: 467-475, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32217140

RESUMO

This study was conducted to examine the combinatory effects of ß-glucan and oxytetracycline (OTC) on hybrid giant tiger groupers (Epinephelus fuscoguttatus × Epinephelus lanceolatus). In vitro tests, OTC significantly reduced superoxide anion production and phagocytic activity in primary head kidney leukocytes. However, this suppressive effect was alleviated by co-treatment with ß-glucan. Subsequently, feeding trials were performed to investigate the potential immunomodulatory effects of dietary ß-glucan alone or in combination with OTC on groupers. A total of 210 healthy groupers (368.00 ± 51.03 g) were divided into six groups. Group 1 was the control group, group 2 (BG) received 5 g ß-glucan per kg feed weight, groups 3-5 received 5 g/kg ß-glucan in combination with 10, 30, or 50 mg OTC/kg fish weight/day (groups M1, M2, and M3, respectively), and group 6 (O) received 50 mg OTC/kg fish weight/day. Fish were sampled to determine the innate immunity parameters and residual OTC levels in the muscle tissue during a 28-day feeding regimen. Residual OTC levels were considerably higher in groups M3 and O compared with the other groups, and peaked on day 14. This was followed by a slight decrease on day 28, despite a continuous supply of OTC. Notably, fish fed with OTC alone had significantly decreased phagocytic rates and superoxide anion production observed in head kidney leukocytes, as well as poorer protection against Vibrio alginolyticus infection. These immunosuppressive effects were not observed in the fish fed with ß-glucan in combination with a lower dose of OTC (group M2). Thus, these data suggest that the combination of dietary ß-glucan and OTC exerts synergistic immunostimulating effects that protect groupers from bacterial infection.


Assuntos
Bass/imunologia , Suplementos Nutricionais/análise , Oxitetraciclina/administração & dosagem , Vibrioses/veterinária , beta-Glucanas/administração & dosagem , Ração Animal/análise , Animais , Bass/microbiologia , Quimera , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Rim Cefálico/citologia , Rim Cefálico/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Imunossupressores/administração & dosagem , Leucócitos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Vibrioses/imunologia , Vibrioses/prevenção & controle , Vibrio alginolyticus/patogenicidade
15.
Dev Comp Immunol ; 108: 103668, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32145295

RESUMO

Catecholamines (CAs) play critical roles in regulating physiological and immunological homeostasis in invertebrates and vertebrates under stressful environments. DOPA decarboxylase (DDC), an enzyme responsible for the decarboxylation step of dopamine synthesis, participates in neurotransmitter metabolism and innate immunity. In shrimp, two genes encoding CA-related enzymes, tyrosine hydroxylase and dopamine beta-hydroxylase, were further identified and characterized as neuroendocrine-immune regulators. In this study, full-length complementary DNA of DDC cloned from the thoracic ganglia of shrimp, Litopenaeus vannamei, (LvDDC) was predicted to encode a 452-amino acid protein with a pyridoxal-dependent decarboxylase-conserved domain, and this deduced protein of LvDDC was phylogenetically closely related to insect DDC. LvDDC messenger RNA expression was analyzed by a semiquantitative RT-PCR and a real-time quantitative RT-PCR and found to be abundant in the hepatopancreas and nervous system but at low levels in haemocytes, heart, stomach, and gills. To determine the role of LvDDC, double-stranded (ds)RNA was used for in vivo assessments. LvDDC-depleted shrimp revealed significant increases in the total haemocyte count, hyaline cells, granular cells, phenoloxidase activity, and respiratory bursts of haemocytes per unit of haemolymph, and phagocytic activity and clearance efficiency toward Vibrio alginolyticus. Further, decreased LvDDC mRNA expression was accompanied by decreases in dopamine, glucose, and lactate levels in haemolymph. In shrimp that received LvDDC-dsRNA for 3 days and were then challenged with V. alginolyticus, the survival rate of LvDDC-depleted shrimp was significantly higher than that of shrimp that received diethyl pyrocarbonate-water or non-targeted dsRNA. In conclusion, the cloned LvDDC was responsible for controlling dopamine synthesis, which then regulated physiological and immune responses in L. vannamei.


Assuntos
Proteínas de Artrópodes/metabolismo , Resistência à Doença/imunologia , Dopa Descarboxilase/metabolismo , Dopamina/biossíntese , Penaeidae/enzimologia , Animais , Aquicultura , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/isolamento & purificação , Clonagem Molecular , Resistência à Doença/genética , Dopa Descarboxilase/genética , Dopa Descarboxilase/isolamento & purificação , Inativação Gênica/imunologia , Hemócitos/enzimologia , Hemócitos/microbiologia , Penaeidae/genética , Penaeidae/imunologia , Penaeidae/microbiologia , RNA de Cadeia Dupla/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Vibrio alginolyticus/imunologia , Vibrio alginolyticus/patogenicidade
16.
Appl Microbiol Biotechnol ; 104(4): 1707-1720, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31907574

RESUMO

Vibrio alginolyticus is an important fish pathogen causing pandemic diseases in marine animals. Small noncoding RNAs (sRNAs) are important posttranscriptional modulators of gene expression and involved in the pathogenesis of bacterial pathogens. Thus far, no cell density-dependent sRNA has been reported in V. alginolyticus. In this study, a cell density-dependent sRNA, Qrr, predicted based on the previous RNA-Seq analysis of V. alginolyticus cultured at low cell density (LCD) and high cell density (HCD), was characterized. The Qrr mutant showed significantly impaired growth and decreased swimming and swarming ability, and increased biofilm formation, extracellular polysaccharide content, serine protease production, and LD50 values during zebrafish infection in contrast to the wild-type strain. Qrr modulates the master regulators LuxR and AphA in quorum sensing (QS) pathways possibly at the posttranscriptional level by base pairing with the 5'-untranslated regions (5'-UTRs). Meanwhile, both LuxR and AphA could directly bind to the promoter of qrr to activate or repress its transcription, respectively. Moreover, our unbiased metabolic approaches revealed that Qrr modulates a large quantity of metabolic and lipidomic pathways, including amino acids, purine and pyrimidine derivatives, tricarboxylic acid cycle (TCA cycle) intermediates, and lipids. Collectively, this work contributes to a systematic understanding of regulatory roles of the cell density-dependent sRNA, Qrr, in V. alginolyticus.


Assuntos
Percepção de Quorum/genética , Pequeno RNA não Traduzido/genética , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo , Regiões 5' não Traduzidas , Animais , Biofilmes/crescimento & desenvolvimento , Dose Letal Mediana , Mutação , Processamento Pós-Transcricional do RNA , Vibrio alginolyticus/patogenicidade , Virulência , Peixe-Zebra
17.
J Fish Dis ; 43(2): 275-284, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31779054

RESUMO

Vibrio alginolyticus is one of the most serious causative agents of diseases in cultured marine fish and shellfish. However, the characteristics of virulence factors in pathogenic V. alginolyticus are poorly known. To gain insight into fish diseases caused by V. alginolyticus, we carried out two-dimensional gel electrophoresis (2-DE) combined with MALDI-TOF mass spectrometry to identify uniquely expressed proteins in the disease-causing V. alginolyticus. V. alginolyticus strains were isolated from marine environments and diseased fish obtained from southern Thailand. We identified seven unique proteins in the disease-causing V. alginolyticus strain. Among those, the outer membrane protein A (OmpA) had the strongest expression. Therefore, the function of this protein was further analysed. To investigate the role of OmpA protein, an in-frame deletion mutant of ompA was constructed using the homologous recombination method. Although the ompA mutant V. alginolyticus strain (ΔompA) grew normally, the mutant exhibited a significant defect in the swarming ability and the biofilm formation. Furthermore, Galleria mellonella larvae injected with the mutant bacteria had a significantly greater survival percentage than those injected with the wild-type strain, demonstrating that OmpA protein is required for the pathogenicity of V. alginolyticus. Together, this study suggests a potential target for vaccine development against pathogenic V. alginolyticus strain.


Assuntos
Proteínas da Membrana Bacteriana Externa/fisiologia , Doenças dos Peixes/microbiologia , Vibrioses/microbiologia , Vibrio alginolyticus/patogenicidade , Fatores de Virulência/fisiologia , Animais , Eletroforese em Gel Bidimensional , Tailândia , Vibrio alginolyticus/genética
18.
Emerg Microbes Infect ; 8(1): 1604-1618, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31711375

RESUMO

The incidence of Vibrio alginolyticus infections has increased in recent years due to the influence of climate change and rising sea temperature. Vibrio virulence regulatory RNA 1 (Vvrr1) is a newly found noncoding RNA (ncRNA) predicted to be closely related to the adhesion ability of V. alginolyticus based on the previous RNA-seq. In this study, the target genes of Vvrr1 were fully screened and verified by constructing Vvrr1-overexpressing strains and using the proteome sequencing technology. Pyruvate kinase I (pykF) gene was predicted to be a chief target gene of Vvrr1 involved in virulence regulation. The adhesion ability, biofilm formation and virulence were significantly reduced in the Vvrr1-overexpressing and the pykF-silenced strain compared with the wild strains. Similar to the overexpression of Vvrr1, the silencing of pykF also reduced the expression level of virulence genes, such as ndk, eno, sdhB, glpF, and cysH. Meanwhile, by constructing the "pykF-GFP" fusion expression plasmid and using the GFP reporter gene analysis in Escherichia coli, the fluorescence intensity of the strain containing Vvrr1 whole ncRNA sequence vector was found to be significantly weakened. These indicated that Vvrr1 participated in the virulence regulation mechanism of V. alginolyticus by interacting with the virulence gene pykF.


Assuntos
Doenças dos Peixes/microbiologia , RNA Bacteriano/genética , RNA não Traduzido/genética , Vibrioses/veterinária , Vibrio alginolyticus/genética , Vibrio alginolyticus/patogenicidade , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Peixes , Regulação Bacteriana da Expressão Gênica , Proteômica , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , RNA Bacteriano/metabolismo , RNA não Traduzido/metabolismo , Vibrioses/microbiologia , Vibrio alginolyticus/metabolismo , Virulência
19.
J Fish Dis ; 42(6): 851-858, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30859598

RESUMO

Vibrio alginolyticus (V. alginolyticus) is a major opportunistic pathogen to both marine animals and humans, which has also caused heavy economic losses to mariculture. The aim of this study was to develop highly specific aptamers for V. alginolyticus. Single-stranded DNA (ssDNA) aptamers with high binding affinity to viable V. alginolyticus were generated by Systematic Evolution of Ligands by Exponential Enrichment (SELEX) and identified by flow cytometric analysis in this study. The selected aptamers showed high specificity for V. alginolyticus and low apparent binding for other bacteria. The aptamers formed distinct stem-loop structures, which could form the basis of aptamers' specific binding to the target V. alginolyticus. Aptamer VA2 and VA8 showed particularly high binding affinity constant (Kd) of 14.31 ± 4.26 and 90.00 ± 13.51 nM, respectively. The aptamers produced no cytotoxic effects in vitro and in vivo. ssDNA aptamers were successfully selected against the viable bacteria pathogen V. alginolyticus by SELEX. The aptamers selected in this study could be not only applied as specific chemical molecular probes for studying V. alginolyticus pathogenesis to Trachinotus ovatus, but also developing rapid convenient diagnosis assay for V. alginolyticus infection, even when applied to the complex sample matrix, such as food and environment samples.


Assuntos
Aptâmeros de Nucleotídeos/química , DNA de Cadeia Simples/química , Vibrioses/veterinária , Vibrio alginolyticus/genética , Animais , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/microbiologia , Peixes/microbiologia , Citometria de Fluxo , Ligantes , Sensibilidade e Especificidade , Vibrio alginolyticus/patogenicidade
20.
J Fish Dis ; 42(5): 703-712, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30811044

RESUMO

Vibrio alginolyticus is a leading aquatic pathogen, causing huge losses to aquaculture. rpoS has been proven to play a variety of important roles in stress response and virulence in several bacteria. In our previous study, upon treatment with Cu2+ , Pb2+ , Hg2+ and low pH, the expression levels of rpoS were downregulated as assessed by RNA-seq, while impaired adhesion ability was observed, indicating that rpoS might play roles in the regulation of adhesion. In the present study, the RNAi technology was used to knockdown rpoS in V. alginolyticus. In comparison with wild-type V. alginolyticus, RNAi-treated bacteria showed significantly impaired abilities of adhesion, growth, haemolytic, biofilm production, movement and virulence. Meanwhile, alterations of temperature, salinity, pH and starvation starkly affected rpoS expression. The present data suggested that rpoS is a critical regulator of virulence in V. alginolyticus; in addition, rpoS regulates bacterial adhesion in response to temperature, pH and nutrient content changes. These are helpful to explore its pathogenic mechanism and provide reference for disease control.


Assuntos
Aderência Bacteriana , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Fator sigma/genética , Vibrio alginolyticus/fisiologia , Vibrio alginolyticus/patogenicidade , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Salinidade , Fator sigma/metabolismo , Temperatura , Vibrio alginolyticus/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...